

7th International Conference on Computational and Mathematical Biomedical Engineering, 27-29 June 2022, Milan, Italy

Soft Tissue Parameter Identification using Machine Learning

Sotirios Kakaletsis^{1*}, Emma Lejeune², Manuel K. Rausch^{1#}

¹Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin ²Mechanical Engineering, Boston University

*kakalets@utexas.edu #manuel.rausch@utexas.edu; www.manuelrausch.com

Motivation

- Biomechanical characterization
 - Blood clot
 - Right ventricular myocardium

Constitutive models

• Blood clot (hyperelastic, isotropic)

$$W = \frac{a}{b^2} \left(\lambda_1^b + \lambda_2^b + \lambda_3^b - 3 \right) \qquad (Ogden, 1973)$$

• Myocardium (hyperelastic, anisotropic)

(Holzapfel et al, 2009)

Isotropic term (amorphous matrix) $W = \frac{a}{2b} (\exp[b(I_1 - 3)] - 1) + \frac{a_f}{2b_f} (\exp[b_f(I_4 - 1)^2] - 1) + \frac{a_s}{2b_s} (\exp[b_s(I_{4s} - 1)^2] - 1) + \frac{a_{fs}}{2b_{fs}} (\exp[b_{fs}I_{8fs}^2] - 1) + \frac{a_{f$

Objective

• Can we accelerate material parameter estimation using machine learning metamodels?

Pipeline

Machine Learning Approach

Training on Synthetic Data – Blood Clot

Validation-Blood Clot

Sample	Method	a	b	NMSE	Acc. Loss
		(Pa)	(-)	(-)	(%)
	LS FEM	657.78	16.17	0.981	0.00
Bost	LS GPR	627.25	16.49	0.980	0.01
Dest	LS NN	656.99	16.24	0.980	0.01
	NNR	91.94	26.35	0.904	7.86
	LS FEM	530.39	16.32	0.989	0.00
Modian	LS GPR	527.16	16.36	0.989	0.00
wieulan	LS NN	558.05	16.03	0.989	0.01
	NNR	194.67	26.21	-0.272	127.47
	LS FEM	847.24	15.38	0.988	0.00
Worst	LS GPR	845.42	15.39	0.988	0.00
worst	LS NN	881.57	15.14	0.988	0.01
	NNR	398.96	29.56	-23.212	2449.85

Training on Synthetic Data – Myocardium

Validation- Myocardium

													•	Experimen	tal Data	LS	FEM	— L	S NN	-	- NNR	
												ess [kPa]	4 S -	F FSx		2	F $\overset{\frown}{\overset{\frown}{\overset{\frown}{\overset{\frown}{\overset{\frown}{\overset{\frown}}}}}}$ S	Fx	7	³] ⊢ ≁	NFx	and the second s
Subject	Method	a	b	a_f	b_f	a_s	b_s	a_{fs}	b_{fs}	NMSE	Acc. Los	Stre	-2			0				0		
		(Pa)	(-)	(Pa)	(-)	(Pa)	(-)	(Pa)	(-)	(-)	(%)	rear	1/			1				•		
	LS FEM	1928.4	9.29	3925.4	19.42	1592.0	0.00	1587.8	0.00	0.878	0.0	S	-8 <u>1° /</u>		40	-2 4	_/		40	-3 1/		
Best	LS NN	2065.4	11.04	11580.1	8.72	780.1	0.03	0.1	18.59	0.758	13.7	_	7.		. 40	1 .			40	1 • N	. NE-	40
	NNR	2319.3	18.88	3215.9	27.24	410.0	24.20	162.8	29.96	0.275	68.7	kPa	Í Í S-			'	\{	⁻ /:	l	, F ≁		,
	LS FEM	1238.8	10.28	487.6	29.14	610.2	0.00	0.0	0.00	0.781	0.0	SSS [*S	et.	, 	and the second s		
Median	LS NN	1259.7	11.50	2418.6	15.31	31.7	16.72	102.2	9.39	0.701	10.3	Stre	3			0 1				0	********	100000
	NNR	1121.8	16.64	2787.2	27.06	794.0	20.96	1445.4	29.29	-8.349	1168.4	mal	: 🖄		**********							
	LS FEM	726.6	7.80	17707.5	0.00	0.2	0.12	0.0	0.00	0.713	0.0	No	-1 !		40	-1 - 40		0	40	-1 !	0	40
Worst	LS NN	765.8	10.89	15542.2	0.03	219.3	11.65	0.3	10.41	0.360	49.5	Ē	51 F	t FFz	1.1.	21	t s	Sz /	40	11 N A	NNz	
	NNR	1835.2	14.49	13346.3	27.00	7997.8	17.04	680.2	19.04	-Inf	\mathbf{Inf}	[kP;	N ↔	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	///•	-	N <u>≁</u>			S∢∄		10000000
												mal Stress	1	*****	THE PARTY OF	-1 •	S .			-2		
												No	-3 17		15	-4		ว	15	-5 15		15
													-15	Strain [%]	-15	Stra	in [%]	13	-10	Strain [%]	15

Conclusions

- Can machine learning accelerate soft tissue parameter identification? –It depends.
 - Complexity of the corresponding experimental protocol
 - Feature space dimension
- Publicly available experimental and synthetic dataset
 - Future advances that further improve similar methods or follow entirely different approaches

References

- Kakaletsis S, Lejeune E, Rausch MK. Can machine learning accelerate soft material parameter identification from complex mechanical test data? (Under Review)
- Sugerman GP, Kakaletsis S, Thakkar P, Chokshi A, Parekh SH, Rausch MK. A whole blood clot thrombus mimic: Constitutive behavior under simple shear. *Journal of the Mechanical Behavior of Biomedical Materials*, 2021.
- Kakaletsis S, Meador WD, Mathur M, Sugerman GP, Jazwiec M, Lejeune E, Timek TA, Rausch MK. Right ventricular myocardial mechanics: Multi-modal deformation, microstructure, and modeling. *Acta Biomaterialia*, 2021.

Thank you!

- Dr. Manuel Rausch, UT Austin (www.manuelrausch.com)
- Dr. Emma Lejeune, Boston University
- Soft Tissue Biomechanics Lab, UT Austin

• Funding sources

	Mechanical		Constitutive
Introduction	Properties	Microstructure	Model

Inverse Analysis Machine Learning

Fiber Orientation

- High resolution images of histology slides
- Directional image analysis (ImageJ / OrientationJ)
- π-periodic von Mises distributions of fiber orientation angles through section levels

٠

The University of Texas at Austin Aerospace Engineering and Engineering Mechanic Cockrell School of Engineering

Right ventricular

ersity of Texas at Austin pace Engineering ngineering Mechanics School of Engineering	Introduction	Mechanical Properties 〇〇〇	Microstructure	Constitutive Model	Inverse Analysis 〇 〇 〇
Holzapfe	l-Ogd	en N	lodel		
ght ventricular myoc	ardium exhi	bited:			-
Nonlinear response					1

- Anisotropic behavior ٠
- Heterogeneous properties. ٠

Structurally based constitutive model by Holzapfel & Ogden (2009):

0000

$$W = \frac{a}{2b} \left(\exp[b(I_1 - 3)] - 1 \right) + \frac{a_f}{2b_f} \left(\exp\left[b_f \left(I_{4f} - 1\right)^2\right] - 1 \right) + \frac{a_s}{2b_s} \left(\exp[b_s (I_{4s} - 1)^2] - 1 \right) + \frac{a_{fs}}{2b_{fs}} \left(\exp[b_{fs} I_{8fs}^2] - 1 \right)$$

Isotropic term (amorphous matrix) Fiber stiffness contribution

Sheet stiffness contribution

Shear coupling (fiber-sheet interaction)

Where the anisotropic **invariants** of the deformation tensor are given by:

 $I_{4f} = \boldsymbol{f}_0 \cdot (\boldsymbol{C}\boldsymbol{f}_0) \qquad \qquad I_{4s} = \boldsymbol{s}_0 \cdot (\boldsymbol{C}\boldsymbol{s}_0)$ $I_{8fs} = \boldsymbol{f}_0 \cdot (\boldsymbol{C}\boldsymbol{S}_0)$

Include fiber dispersion

Modify strain energy to account for in-plane fiber dispersion:

$$W = \frac{a}{2b} (\exp[b(I_1 - 3)] - 1) + \frac{a_f}{2b_f} (\exp[b_f(I_{4f} - 1)^2] - 1) + \frac{a_s}{2b_s} (\exp[b_s(I_{4s} - 1)^2] - 1) + \frac{a_{fs}}{2b_{fs}} (\exp[b_{fs}I_{8fs}^2] - 1)$$

$$\int_{0}^{2\pi} H(I_{4f} - 1) \left\{ \frac{a_f}{2b_f} (\exp[b_f(I_{4f} - 1)^2] - 1) \right\} R(\theta) \, d\theta$$

where

- $H(I_{4f} 1)$ the Heaviside step function to ensure fibers contribute **only under tension**
- $R(\theta)$ is π -periodic von Mises function with $R(\theta) = \frac{\exp(b \cos(2[\theta \mu]))}{2\pi I_0(b)}$
- Angular integration approach

The Universit	ty of Texas at Austin		Mechanical		Constitutive	Inverse	Machine
😥 Aerospa	ce Engineering	Introduction	Properties	Microstructure	Model	Analysis	Learning
and Engi Cockrell Schoo	ineering Mechanics ol of Engineering	00	00	00	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	000	00000

Model Classes

Model Class 1

No dispersion

 $\frac{a_f}{2b_f} \left(\exp\left[b_f \left(I_{4f} - 1 \right)^2 \right] - 1 \right)$

Model Class 2

2D von Mises Distribution

 $\int_{0}^{2\pi} H(I_{4f} - 1) \left\{ \frac{a_f}{2b_f} \left(\exp\left[b_f (I_{4f} - 1)^2 \right] - 1 \right) \right\} R(\theta) \ d\theta$

For highly concentrated fiber distributions (high concentration parameter b) the two classes are equivalent:

👜 The Univ	versity of Texas at Austin		Mechanical		Constitutive	Inverse	Machine
Aeros	space Engineering	Introduction	Properties	Microstructure	Model	Analysis	Learning
and E	ngineering Mechanics School of Engineering	00	00	00	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	000	00000

Incompressibility

• Decompose deformation gradient into volumetric and isochoric part:

$$\boldsymbol{F} = \left(J^{1/3}\boldsymbol{I}\right) \cdot \left(J^{-1/3}\boldsymbol{F}\right) = \boldsymbol{F}_{vol} \cdot \widetilde{\boldsymbol{F}}$$

Note: det $(F_{vol}) = J$ and det $(\tilde{F}) = 1$

• Volumetric-Isochoric split of strain energy function

$$W(\boldsymbol{C}) = U(J) + W_{iso}(\boldsymbol{\widetilde{C}})$$

where $U(J) = K/2 \ln(J)^2$, $\tilde{C} = \tilde{F}^T \tilde{F}$ and W_{iso} as presented previously, by substituting the isochoric invariants

$$l_{4f} = \boldsymbol{f}_0 \cdot (\boldsymbol{\tilde{C}} \boldsymbol{f}_0) \qquad \qquad l_{4s} = \boldsymbol{s}_0 \cdot (\boldsymbol{\tilde{C}} \boldsymbol{s}_0) \qquad \qquad l_{8fs} = \boldsymbol{f}_0 \cdot (\boldsymbol{\tilde{C}} \boldsymbol{s}_0)$$

	Mechanical	
Introduction	Properties	Microstruc
$\circ \circ$	$\circ \circ$	$\circ \circ$

Constitutive Model Inverse Analysis Machine Learning

Material Parameter Estimation

	Mechanical	
Introduction	Properties	Microstructure
00	00	00

Constitutive Model Inverse Analysis Machine Learning

Material Parameter Estimation

kas at Austin gineering ing Mechanics gineering	Introduction	Mechanical Properties	Microstructure	Constitutive Model OOOO	Inverse Analysis 〇 〇 〇	Machine Learning	

Mechanical Testing

A. Excise specimens (10x10x10mm cubes)

B. Test in 9 different modes

15 Stress-strain curves per samp

The University of Texas at Austin		Mechanical		Constitutive	Inverse	Machin
Aerospace Engineering	Introduction	Properties	Microstructure	Model	Analysis	Learnin
and Engineering Mechanics Cockrell School of Engineering	0 0	00	0 0	0000	$\circ \circ \circ$	0000
Cockrea School of Engineering						

Practical Aspects

Run all 9 modes in parallel

	Element Type	Run Time 9 modes [sec]	Run Time 9 modes [min]	Run time for 15 iterations [h]
Class 1	Linear	23.2	0.4	0.9
	Quad	167.8	2.8	6.3
010	Linear	70.3	1.2	2.6
Class 2	Quad	184.7	3.1	7.0

9 modes * 9 param var. = 81 FEBio runs / iteration

15 iter. * 81 = 1,215 FEBio runs for converged parameters

 \bigcirc

n	
ng	
chanics	

	Mechar
tion	Proper
	O C

ical

Constitutive Microstructure $\bigcirc \bigcirc$ 0000

Model

Inverse

Machine Learning

Machine Learning Approach

Substitute forward FE simulations by a ML metamodel. Motivation:

- A gradient-based inverse method using FE simulations is very expensive!
- Even more expensive for continuous fiber ٠ distribution materials using the angular integration method.
- Predictive power: replace the entire ٠ pipeline to estimate material parameters.

The University of Texas at Austin		Mechanical			Inverse	Machine	
Aerospace Engineering	Introduction	Properties	Microstructure	Model	Analysis	Learning	
and Engineering Mechanics Cockrell School of Engineering	0 0	00	00	0000	000	0000	
							-

The problem

10,000 Samples

100 values / sample

The University of The University of The University of The Aerospace For and Engineer Cockrell School of The Article School of The Ar

iversity of Texas at Austin space Engineering Engineering Mechanics I School of Engineering	Introduction	Mechanical Properties 〇〇〇	Microstructure	Constitutive Model OOOOO	Inverse Analysis 〇 〇 〇	Machine Learning	
Metamode	el Sel	lecti	on				
Multivariate Adaptive Regression Splines		Gau Aniso	i ssian Proce s Regressor tropic RBF ke	Neur a Multi-lay Re	Neural Network Multi-layer Perceptron Regressor		
MARS	0.2 0.15 - 22 0.1 - 0.05 - 0.05 - 0 -	0 1000 1500 2000 Numbe	GPR	Train Test	0.7 0.6 0.5 0.5 0.4 0.1 0.2 0.1 0.2 0.1 0.000 2000 30 Numb	NN	

The University of Texas at Austin	Mechanical			Constitutive	Inverse	Machine	
Aerospace Engineering	Introduction	Properties	Microstructure	Model	Analysis	Learning	
and Engineering Mechanics Cockrell School of Engineering	00	00	00	0000	000	00000	

Preliminary Results

副

Stress-strain prediction of one sample in validation set, trained with 5,000 samples

