

The University of Texas at Austin **Aerospace Engineering** and Engineering Mechanics Cockrell School of Engineering

MICROSTRUCTURE-BASED ESTIMATION OF THE EFFECTIVE STIFFNESS OF CROSSLINKED, EMBEDDED FIBER NETWORKS

SB3C 2023 June 4th - 8th , 2023 Vail, Colorado

Sotirios Kakaletsis*¹, Emma Lejeune², Manuel K. Rausch¹

June 7, 2023

¹ Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin 2Mechanical Engineering, Boston University

Intro Theory Validation Example Fiber Networks Conclusion

Introduction

- Semi-flexible biopolymers are ubiquitous building blocks of life, often organized in **fibrous networks**
	- Collagen networks in myocardium, skin, blood vessels, ligaments, tendons etc.
	- Fibrin networks in blood clots

- No embedding matrix
- Elastic behavior
- Discrete elements
- § Why in isolation? **Discretization**

§ They exhibit **complex mechanical phenomena**

Network mod Ban et al. (2019)

- Strong nonlinearities
- Strain stiffening
- Anomalous Poisson's effect
- Negative Poynting effect

§ Previous efforts have modeled fiber networks in **isolation:**

B. Intrigila, et al. (2007)

Chernysh, Irina N., et al. *Scientific reports* 10.1 (2020)

- § **Motivation**: Delineate contributions of each constituent: **matrix** and **fibers**
	- How does network architecture affect the mechanics/ apparent stiffness?
	- Mean fiber length?
	- Fiber undulations?
- large deformation.
- Modeling approaches for embedded elastic fibers:

■ **Objective**: Develop a computationally efficient model of the elastic behavior of embedded fiber networks under

Introduction

TEXAS **AEROSPACE ENGINEERING AND ENGINEERING MECHANICS**

■ Based on previous work by Steinbrecher, Ivo, et al. "A mortar-type finite element approach for embedding

 $\mathbb{R}^{D-3D} = \Omega^B$ (beam centerline)

 $\delta W^S + \delta W^B + \delta W^C = 0$ Solid Beam Coupling

 $\lambda \in \mathbb{R}^3$: Lagrange multiplier field (interface line load)

- **1D beams into 3D solid volumes.**" *Computational Mechanics* (2020).
- Coupling Constraint:

$$
\underline{\boldsymbol{u}}^B - \underline{\boldsymbol{u}}^S = \underline{\boldsymbol{0}} \text{ on } \Gamma_c^{11}
$$

• Principle of virtual work:

$$
\delta W^C = -\delta W_c + \delta W_\lambda = \int_{\Gamma_c^{1D-3D}} \underline{\lambda} \big(\delta \underline{u}^B - \delta \underline{u}^S \big) ds + \int_{\Gamma_c^{1D-3D}} \delta \underline{\lambda} \big(\underline{u}^B - \underline{u}^S \big) ds
$$

where

§ Linearized system:

$$
\begin{bmatrix} K_{SS} & 0 & -M^T \ 0 & K_{BB} & D^T \ -M & D & 0 \end{bmatrix} \begin{bmatrix} \Delta \mathbf{d}^S \\ \Delta \mathbf{d}^B \end{bmatrix} = \begin{bmatrix} -f_{int}^S + f_{ext}^S \\ -f_{int}^B + f_{ext}^B \end{bmatrix} \text{ where } g_c(\mathbf{d}^S, \mathbf{d}^B) = [-M & D] \begin{bmatrix} \mathbf{d}^S \\ \mathbf{d}^B \end{bmatrix}
$$

Enforce coupling constraint using the penalty method and setting in the setting in Setting 4.

$$
nod and setting \lambda = \varepsilon \kappa^{-1} g_c(d^S, d^B)
$$

$$
\begin{bmatrix}\nK_{SS} + \varepsilon M^T \kappa^{-1} M & -\varepsilon M^T \kappa^{-1} D \\
-\varepsilon D^T \kappa^{-1} M & K_{BB} + \varepsilon D^T \kappa^{-1} D\n\end{bmatrix}\n\begin{bmatrix}\n\Delta \mathbf{d}^S \\
\Delta \mathbf{d}^B\n\end{bmatrix} =\n\begin{bmatrix}\n-f_{int}^S + f_{ext}^S - f_c^S \\
-f_{int}^B + f_{ext}^B - f_c^B\n\end{bmatrix}
$$
\nwith\n
$$
-f_c^S = \varepsilon M^T \kappa^{-1} [-M \quad D] \begin{bmatrix} \mathbf{d}^S \\
\mathbf{d}^B\n\end{bmatrix}
$$
\n
$$
-f_c^B - \varepsilon D^T \kappa^{-1} [-M \quad D] \begin{bmatrix} \mathbf{d}^S \end{bmatrix}
$$

$$
\begin{aligned}\n-\varepsilon M^T \kappa^{-1} D \\
K_{BB} + \varepsilon D^T \kappa^{-1} D \left[\Delta \mathbf{d}^S \right] &= \left[-f_{int}^S + f_{ext}^S - f_c^S \right] \\
\text{with} \\
-f_c^S &= \varepsilon M^T \kappa^{-1} [-M \quad D] \left[\mathbf{d}^S \right] \\
-f_c^B &= \varepsilon D^T \kappa^{-1} [-M \quad D] \left[\mathbf{d}^S \right] \\
\end{aligned}
$$

Validation

- Reinforced cantilever beam, fixed on the left end, applied distributed load on the free face (right end).
- Comparison between the full 3D model (reference solution) and our beam-tosolid coupling Abaqus implementation.
- Displacement error of the solid domain:

$$
||e|| = \sqrt{\frac{\int_{V_0} ||u^S - u_{ref}^S||^2 dV_0}{\int_{V_0} ||u_{ref}^S||^2 dV_0}}
$$

Validation – Sensitivity Studies

- § Limitations
	- Beam element size > Solid element size
	- Solid element size ≈ Fiber radius
- Displacement error: < 1.0%
- **Reference solution**
	- Solid elements: 75,985
	- CPU time: 2210 sec
- § Beam-to-solid coupling
	- Solid elements: 625
	- CPU time: 29 sec

Example: Helical Beam

- § Spatial Timoshenko beam.
- **Example 2 Linear elastic material law.**
- § Uniaxial extension to 100% strain.

- § Strain energy components:
	- Axial stretching
	- Bending
	- Torsional

Example: Helical Beam

- Same beam, embedded into isotropic, incompressible Neo-hookean material.
- Our model is able to:
	- Capture beam instabilities caused by the solid-to-beam interaction forces.
	- Delineate the contribution of each strain energy component.
	- Investigate the effect of the relative stiffness between the solid matrix and the beam.

- Voronoi-based networks
	- Average connectivity number <z>=3.4
	- Introduce sinusoidal undulations

Embedded Fiber Networks

- Simple shear deformation
	- Rigid displacement boundary conditions
	- Cubic geometry
	- Deformed up to 50% shear strain
- Effective Stiffness
	- Shear & Normal moduli

$$
G=\frac{\Delta \sigma_{xy}}{\Delta \gamma}, \quad G_n=\frac{\Delta \sigma_{yy}}{\Delta \gamma}
$$

Size Effect

- Investigated the size effect on the apparent stiffness
	- Varying network sizes with same density
	- Shear Modulus
	- Normal Modulus
	- At three different fiber-to-matrix stiffness ratio Ef/Em
- The size effect is more prominent at
	- Higher fiber-to-matrix stiffness ratio
	- Shear modulus at the low-strain regime
- **Highest density network converges sufficiently** for both Shear and Normal moduli
	- Increasing fiber number the change in effective moduli decreases

12

Density Effect

- **Network Density Study**
	- Constant network size (edge length)
	- Decreasing mean fiber length
	- Increasing network density
	- Simple Shear deformation
- Embedding fiber networks leads to
	- Strain stiffening behavior
	- A more pronounced negative Poynting effect
- From a strain energy perspective, these phenomena are driven primarily by fiber stretching, rather than bending or torsion

13

Networks and Matrix-stress Distribution

- Distribution of max. principal stress as a function of network density
- § Embedding networks introduce
	- Stress heterogeneity
	- Local stress concentrations

Intro Theory Validation Example Fiber Networks Conclusion

Fiber Strain Energy

Fiber crimp c/l [%] & fiber radius

- § Stretching energy dominates for
	- Large deformations
	- Fibers with small undulations
	- Fibers with small radii
- Bending energy dominates for
	- linear/small deformations
	- fibers with large undulations
	- fibers with large radii

Conclusion

- Given the limitations presented (penalty parameter, mesh size, element length ratio), the mortar-type finite element approach can provide efficient models for embedded fiber networks.
- Embedding fiber networks leads to
	- Strain stiffening behavior
	- Negative Poynting effect
	- Stress heterogeneity
- Stretching (membrane) strain energy dominates the mechanics at large deformations.
- Future work
	- Interpret experimental data (blood clot modeling).
	- Expand on viscoelastic and/or damage-failure models of the fibers.

THANK YOU.

Dr. Manuel Rausch

SOFT TISSUE BIOMECHANICS LABORATORY

The University of Texas at Austin
Aerospace Engineering
and Engineering Mechanics
Cockrell School of Engineering

The University of Texas at Austin
 **Aerospace Engineering

and Engineering Mechanics**

Cockrell School of Engineering

Intro Theory Validation Example Fiber Networks Conclusion

$l = 1$ \overline{n}_B $H_l(\xi^B)I^{3x3}d_l^B$ $\lambda_h = \sum_l$ $l = 1$ n_{λ} $\Phi_j(\xi^B) \lambda_j$

• Discretization of the solid, beam displacement and the Lagrange multiplier (LM) fields: $\mathbf{u}_h{}^S = \sum$ \overline{n}_S $N_k(\xi, \zeta, \eta) d_k^S$ $\underline{u}_h{}^B = \sum_{k=1}^{\infty}$

$$
\underline{u}_h^{\varepsilon} = \sum_{k=1}^N N_k(\zeta, \zeta, \eta) \underline{u}_k^{\varepsilon} \qquad \qquad \underline{u}_h^{\varepsilon}
$$

■ Coupling matrices from δW^C (integration on the beam centerline): $\boldsymbol{D}^{(j,l)} = \begin{bmatrix} \end{bmatrix}$ $\Gamma_{\text{C},h}^B$ $\Phi_j H_l(\xi^B) ds \, I^{3x3} \qquad \qquad M^{(j,k)} = \, 1$

LM node $j \leftrightarrow$ Beam node *l*.
LM node $j \leftrightarrow$ Solid node *k*

$$
F^{(k)} = \int_{\Gamma_{c,h}^{B}} \Phi_j N_k ds \quad I^{3x3} \qquad \qquad \kappa^{(j,j)} = \int_{\Gamma_{c,h}^{B}} \Phi_j N_k ds \quad I^{3x3}
$$

Projection to solid domain to evaluate N_k

$$
\boldsymbol{\kappa}^{(j,j)} = \int_{\Gamma_{c,h}^B} \Phi_j ds \, I^{3x3}
$$

Scaling matrix: LM node j

- § Voronoi-based networks
	- Average connectivity number <z>=3.4
	- Introduce sinusoidal undulations
- Size Effect Study

■ Density Effect study

ၯ

Embedded Fiber Networks