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Introduction

: \.,;”trig"a’ stal (2_00.7)! ~__ LT.Smith,etal (1982
= Semi-flexible biopolymers are ubiquitous building blocks of life, g & 47

often organized in fibrous networks

« Collagen networks in myocardium, skin, blood vessels, ligaments, tendons etc.
* Fibrin networks in blood clots
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= They exhibit complex mechanical phenomena
» Strong nonlinearities
« Strain stiffening
* Anomalous Poisson’s effect
* Negative Poynting effect

. Stretched
% Fibers
o Other
Fibers

Network model
Ban et al. (2019)

= Previous efforts have modeled fiber networks in isolation:
»  No embedding matrix
« Elastic behavior
* Discrete elements

Chernysh, Irina N., et al. Scientific repo
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Merson & Picu (2020) Figure adapted from Janmey P. A, et al. (2016)

= Why in isolation”? — Discretization
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Introduction

= Motivation: Delineate contributions of each constituent: matrix and fibers

 How does network architecture affect the mechanics/ apparent stiffness?
* Mean fiber length?
* Fiber undulations?

= Objective: Develop a computationally efficient model of the elastic behavior of embedded fiber networks under
large deformation.

* Modeling approaches for embedded elastic fibers:

p-

§

Continuum

/ model

Beam-to-solid

\\\ coupling
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Theory S

= Based on previous work by Steinbrecher, Ivo, et al. "A mortar-type finite element approach for embedding
1D beams into 3D solid volumes." Computational Mechanics (2020).

= Coupling Constraint:

u?® —u’ = 0 on IP—3P = OB (beam centerline)

* Principle of virtual work: Solid  Beam
SW> + WP + =0
= —5W, + 6W, = f A(Su® — su’)ds + f 6A(u” — u®)ds
FéD_3D F%D—BD

where
A € R3: Lagrange multiplier field (interface line load)
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Theory S

* Linearized system:

K¢ 0 -—M

-M D

= Enforce coupling constraint using the penalty method and setting A = ex~1g.(d>, d®)
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Validation Beam-to-solid
Coupling Validation

= Reinforced cantilever beam, fixed on T
the left end, applied distributed load on \
the free face (right end).

= Comparison between the full 3D model
(reference solution) and our beam-to-
solid coupling Abagus implementation.

= Displacement error of the solid domain:

2
fVO HES - _fefH dVy
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Limitations

Beam element size > Solid element size

Solid element size = Fiber radius

Displacement error: < 1.0%

Reference solution

Beam-to-solid coupling

Solid elements: 75,985
CPU time: 2210 sec

Solid elements: 625
CPU time: 29 sec

Validation - Sensitivity Studies
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Example: Helical Beam

= Spatial Timoshenko beam.

100
= Linear elastic material law. ©
2. 80
O
E - Stretchin
» Uniaxial extension to 100% = 60 NS
strain. GE; Bending
- .
LL] = [O'SION
S 40
: o
= Strain energy components: N
* Axial stretching % 20
. )
* Bending o0
* Torsional
0 - - - - d
0.0 Beam displacement [nm] 2.0 0 20 40 60 80 100

B i Axial Strain [ % ]
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Example: Helical Beam

= Same beam, embedded into
Isotropic, incompressible
Neo-hookean material.

= QOur model is able to:

Capture beam instabilities
caused by the solid-to-beam
iInteraction forces.

Delineate the contribution of

each strain energy component.

Investigate the effect of the
relative stiffness between the
solid matrix and the beam.

0.0 Beam displacement [mm] 2.0

i
0.0

Solid Stress [kPa]

R
10.0

100

oo
o

- Stretching
Bending
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Beam Strain Energy Ratio [ % ]

0 20 40 60 80 100
Axial Strain [ % ]
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Embedded Fiber Networks

= \/oronoi-based networks

N
™

Average connectivity number <z>=

Introduce sinusoidal undulations

= Simple shear deformation

8.0e-02
— 0.05

Rigid displacement boundary conditions

Cubic geometry

(-) UIDIS [OIXY Joqld

0.05

Deformed up to 50% shear strain

-8.0e-02

= Effective Stiffness

Shear & Normal moduli
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Size Effect

L/L, = 50% L/IL, =72% L/L = 100%

L/L, = 86%

* |nvestigated the size effect on the apparent
stiffness
* Varying network sizes with same density
* Shear Modulus
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= Network Density Study
« Constant network size (edge length)
* Decreasing mean fiber length
* Increasing network density
* Simple Shear deformation

o

01 02 03 04
Network Density p [%]

Normal Modulus Gn/Gn_
0 75 150
©

= Embedding fiber networks leads to g ;
« Strain stiffening behavior 2 2
* A more pronounced negative Poynting 501 0 05 501 01 05
effect Shear Strain y [ - ] Shear Strain y [ -]

100,

= From a strain energy perspective,
these phenomena are driven primarily
by fiber stretching, rather than bending
or torsion
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Networks and Matrix-stress Distribution

= Distribution of max. principal stress as a function of
network density

= Embedding networks introduce

» Stress heterogeneity
 |ocal stress concentrations

Shear Strain y = 50%

PDF [ -]

2 -1 0 1 2 3
Max. Principal Ef‘max /Gm [ -]
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= Fiber crimp ¢/l [%] & fiber radius

= Stretching energy dominates for
- Large deformations
* Fibers with small undulations
* Fibers with small radii

= Bending energy dominates for
 linear/small deformations
 fibers with large undulations
 fibers with large radii

Fiber Strain Energy

Fiber Crimp = 20%

Fiber Crimp = 10%
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80

Fiber Networks

Conclusion
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Conclusion

Given the limitations presented (penalty parameter,
mesh size, element length ratio), the mortar-type finite
element approach can provide efficient models for

embedded fiber networks.

Embedding fiber networks leads to
« Strain stiffening behavior
* Negative Poynting effect
« Stress heterogeneity

Stretching (membrane) strain energy dominates the
mechanics at large deformations.

Future work
* Interpret experimental data (blood clot modeling).

« Expand on viscoelastic and/or damage-failure models of the
fibers.

=]

Fiber Axial Strain (
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= Discretization of the solid, beam displacement and the Lagrange multiplier (LM) fields:

2 Ne (€, ¢ m)ds

2 Hl (EB IBdeB

= Coupling matrices from 61/ ° (integration on the beam centerline):
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Embedded Fiber Ne_tworlgs

= Voronoi-based networks
* Average connectivity number <z>=3.4

 |Introduce sinusoidal undulations Q0
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