

Mechanics and Microstructurally Based Modeling of the Passive Right Ventricular Myocardium

Sotiris Kakaletsis^{1#}, Gabriella P. Sugerman², Marcin Malinowski³, Tomasz A. Timek³, Emma Lejeune⁴, Manuel K. Rausch^{1,2^{*}}

¹Department of Aerospace Engineering and Engineering Mechanics University of Texas at Austin Austin, TX, USA

> ³Cardiothoracic Surgery Spectrum Health Grand Rapids, MI, USA

²Department of Biomedical Engineering University of Texas at Austin Austin, TX, USA

⁴Department of Mechanical Engineering Boston University Boston, MA, USA

16th U.S. National Congress on Computational Mechanics July 26, 2021

#kakalets@utexas.edu
*manuel.rausch@utexas.edu; www.manuelrausch.com

	Mecha
troduction	Prope
$\bigcirc \bigcirc$	\bigcirc (

anical

Constitutive Model

Analysis

ML Metamodels

The right ventricle

- Receives and pumps deoxygenated blood from the right atrium into the pulmonary circulation
- · Historically understudied
- Pathological conditions and disease
 - Right ventricular dilation in Covid-19 infections
 - Tricuspid valve regurgitation
 - Pulmonary hypertension
 - o Myocardial Infarction

https://mrudangm.github.io

Mathur M, et al. The Annals of Thoracic Surgery, 2020.

Edwards

Physio

Edwards

Classic

Edwards

0.0e+00

MC3

ersity of Texas at Austin pace Engineering ngineering Mechanics School of Engineering	Introduction	Mechanical Properties	Microstructure	Constitutive Model	Inverse Analysis 〇 〇 〇 〇
Mechanic	cal Te	sting			

- C. Stress-strain curves A. Specimen preparation B. Test in 9 different modes (ovine animal model) Position F Position S Position N Mode FN Mode FF Mode FS 0 FSz FF FNz Example Shear Stres IkP al Stres [kPa FNx Nomenclature 20 40 -40 -20 20 40 -15 15 Strain [%] Strain [%] Strain [%] — SN — FF — NF — SS FN ←→: Shear Stress SF NS -NN Anatomic Directions: 3 Uniaxial 6 Simple shear • F: Fiber modes modes S: Sheet N: Sheet-normal
 - 15 Stress-strain curves per sample

ML

Metamodels

The University of Texas at Austin (F)

	Mechanica
roduction	Properties
$\bigcirc \bigcirc$	\bigcirc \bigcirc

Aechanical

Microstructure

Constitutive Model

Analysis

ML **Metamodels**

- Linear mixed model
- Anisotropy, tension-compression nonlinearity
- Negative Poynting effect ٠

	Mechanic
ntroduction	Propertie
00	00

Microstructure \bigcirc

Constitutive Model

Analysis

0000

Metamodels

Fiber Orientation

- High resolution images of histology slides
- Directional image analysis (ImageJ / OrientationJ) .
- π -periodic von Mises distributions of fiber orientation ٠ angles at each section level

	Mechan
ntroduction	Propert
00	00

Constitutive Model ML Metamodels 〇〇〇

Holzapfel-Ogden Model

Right ventricular myocardium exhibited:

- Nonlinear response
- Anisotropic behavior
- Heterogeneous properties.

Structurally based constitutive model by Holzapfel & Ogden (2009):

Analysis

 $W = \frac{a}{2b} \left(\exp[b(l_1 - 3)] - 1 \right) + \frac{a_f}{2b_f} \left(\exp\left[b_f \left(l_{4f} - 1\right)^2\right] - 1 \right) + \frac{a_s}{2b_s} \left(\exp[b_s (l_{4s} - 1)^2] - 1 \right) + \frac{a_{fs}}{2b_{fs}} \left(\exp[b_{fs} l_{8fs}^2] - 1 \right)$

es

Isotropic term (amorphous matrix) Fiber stiffness contribution

Sheet stiffness contribution

Shear coupling (fiber-sheet interaction)

Where the anisotropic invariants of the deformation tensor are given by:

 $I_{4f} = \boldsymbol{f}_0 \cdot (\boldsymbol{C}\boldsymbol{f}_0) \qquad \qquad I_{4s} = \boldsymbol{s}_0 \cdot (\boldsymbol{C}\boldsymbol{s}_0) \qquad \qquad I_{8fs} = \boldsymbol{f}_0 \cdot (\boldsymbol{C}\boldsymbol{s}_0)$

		Mechanical		Constitutive	Inverse	ML	
ig hanics	Introduction	Properties	Microstructure	Model	Analysis	Metamodels	

Include fiber dispersion

Modify strain energy to account for in-plane fiber dispersion:

$$W = \frac{a}{2b} (\exp[b(I_1 - 3)] - 1) + \frac{a_f}{2b_f} \left(\exp\left[b_f (A_f - 1)^2\right] - 1 \right) + \frac{a_s}{2b_s} (\exp[b_s (I_{4s} - 1)^2] - 1) + \frac{a_{fs}}{2b_{fs}} (\exp[b_{fs} I_{8fs}^2] - 1)$$

$$\int_{0}^{2\pi} H(I_{4f} - 1) \left\{ \frac{a_f}{2b_f} \left(\exp\left[b_f (I_{4f} - 1)^2\right] - 1 \right) \right\} R(\theta) \, d\theta$$

where

- $H(I_{4f} 1)$ the Heaviside step function to ensure fibers contribute only under tension ٠
- *R*(*θ*) is π-periodic von Mises function with $R(\theta) = \frac{\exp(b \cos(2[\theta \mu]))}{2\pi I_0(b)}$ ٠
- Angular integration approach

Hou C., Ateshian G.A. Computer methods in biomechanics and biomedical engineering, 2016.

Cockrell School of Engineering

Intro

Mechanical n Properties

Microstructure

Constitutive Model ML Metamodels

Analysis

0000

Model Classes

Model Class 1

No dispersion

 $\frac{a_f}{2b_f} \left(\exp\left[b_f \left(I_{4f} - 1 \right)^2 \right] - 1 \right)$

Model Class 2

2D von Mises Distribution

 $\int_{1}^{2\pi} H(I_{4f}-1) \left\{ \frac{a_f}{2b_f} \left(\exp\left[b_f \left(I_{4f}-1 \right)^2 \right] -1 \right) \right\} R(\theta) \ d\theta$

For highly concentrated fiber distributions (high concentration parameter b) the two classes are equivalent:

Incompressibility

• Decompose deformation gradient into volumetric and isochoric part:

$$\boldsymbol{F} = \left(J^{1/3}\boldsymbol{I}\right) \cdot \left(J^{-1/3}\boldsymbol{F}\right) = \boldsymbol{F}_{vol} \cdot \widetilde{\boldsymbol{F}}$$

where $det(\mathbf{F}_{vol}) = J$ and $det(\mathbf{\widetilde{F}}) = 1$.

• Volumetric-Isochoric split of strain energy function

$$W(\boldsymbol{C}) = U(J) + W_{iso}(\boldsymbol{\widetilde{C}})$$

where $U(J) = K/2 \ln(J)^2$, $\tilde{C} = \tilde{F}^T \tilde{F}$ and W_{iso} as presented previously, by substituting the isochoric invariants

$$I_{4f} = \boldsymbol{f}_0 \cdot (\boldsymbol{\tilde{C}} \boldsymbol{f}_0) \qquad \qquad I_{4s} = \boldsymbol{s}_0 \cdot (\boldsymbol{\tilde{C}} \boldsymbol{s}_0) \qquad \qquad I_{8fs} = \boldsymbol{f}_0 \cdot (\boldsymbol{\tilde{C}} \boldsymbol{s}_0)$$

Mechanical				
Introduction	Properties	Microstructure		
00	0 O	00		

Constitutive Model

Metamodels

Inverse

Analysis

Material Parameter Estimation

	Mec
ntroduction	Pro
$\bigcirc \bigcirc$	0

Constitutive Model

Inverse

Analysis

ML Metamodels

Material Parameter Estimation

Microstructure inclusion strategies:

nanical

 \bigcirc

Model Class 2

	Strategy	/			NMSE	
Sample	1	2	3	4	min	max
1	1.0	3.2	10.0	9.3	0.913	0.932
2	1.0	10.0	8.4	5.8	0.852	0.901
3	6.1	4.6	10.0	1.0	0.858	0.868
4	10.0	9.9	1.0	3.0	0.636	0.734
5	10.0	9.6	9.1	1.0	0.713	0.761
6	1.0	1.2	10.0	1.3	0.750	0.765
7	1.0	9.3	4.9	10.0	0.692	0.781
8	7.1	10.0	1.0	4.7	0.642	0.683
9	1.0	4.1	3.5	10.0	0.569	0.582
10	1.0	6.0	8.7	10.0	0.799	0.893
11	10.0	9.8	1.5	1.0	0.813	0.835
Mean	4.5	7.1	6.2	5.2		
SE	1.3	1.0	1.2	1.2		

Prope
0 (

Constitutive Model

Inverse

Analysis

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

ML Metamodels

Predictive ability

Microstructure inclusion strategies:

inical

Model Class 2

		Strategy			
		1	2	3	4
а	(Pa)	2088.75	2163.74	2176.85	2113.71
b	(-)	4.427	4.239	4.200	4.319
a_f	(Pa)	4254.81	3847.00	5402.66	6595.44
bf	(-)	5.027	10.794	7.174	4.340
as	(Pa)	966.50	634.37	78.53	0.82
bs	(-)	0.0	0.002	0.110	0.004
a_{fs}	(Pa)	1152.72	1119.13	0.0	393.86
bis	(-)	9.149	1.263	0.0	1.154
Direc	ct Fit NMSE	0.569	0.573	0.572	0.582
Pred	iction NMSE	0.500	0.510	0.512	0.515

Predictive power

Microstructure inclusion complexity

	Mechai
ntroduction	Proper
00	O C

ical

ies

Constitutive Model

Inverse

Analysis

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

ML Metamodels

Practical Aspects

	Element Type	Run Time 9 modes [sec]	Run Time 9 modes [min]	Run time for 15 iterations [h]
Class 1	Linear	23.2	0.4	0.9
	Quad	167.8	2.8	6.3
Class 2	Linear	70.3	1.2	2.6
	Quad	184.7	3.1	7.0

9 modes * 9 param var. = 81 FEBio runs / iteration

15 iter. * 81 = 1,215 FEBio runs for converged parameters

Expensive!

	Mechanical	
Introduction	Properties	Microstru
00	0 O	OC

Constitutive Model

ML **Metamodels** $\bigcirc \bigcirc \bigcirc \bigcirc$

Analysis

0000

Machine Learning Approach

	Mechanical		
roduction	Properties	Mic	
00	0 O		

 $\bigcirc \bigcirc$

Constitutive Model

Analysis

0000

ML **Metamodels** $\bigcirc \bigcirc \bigcirc$

Machine Learning Approach

Conclusions

- Right ventricular myocardium fibers are dispersed in the longitudinal-circumferential plane and the radial-circumferential plane, in consistency with the anisotropic, nonlinear passive response.
- The Holzapfel constitutive model can represent well the right ventricular myocardial mechanics.
- Detailed inclusion of microstructural information improves the predictive ability of the constitutive model.

The University of Texas at Austin Aerospace Engineering and Engineering Mechanics Cockrell School of Engineering

Open Data

High Resolution Histology Images

www.manuelrausch.com/outreach

 Mechanical testing Data

 Image: state state

www.manuelrausch.com/outreach

Reference:

Kakaletsis, S., Meador, W.D., Mathur, M., Sugerman, G.P., Jazwiec, T., Malinowski, M., Lejeune, E., Timek, T.A. and Rausch, M.K., 2020. Right Ventricular Myocardial Mechanics: Multi-Modal Deformation, Microstructure, Modeling, and Comparison to the Left Ventricle. *Acta Biomaterialia*.

The University of Texas at Austin Aerospace Engineering and Engineering Mechanics Cockrell School of Engineering

Thank you! Questions?

Soft Tissue Biomechanics Lab

Dr. Manuel Rausch William Meador Mrudang Mathur Gabriella Sugerman Christina Lin **Collaborators:** Dr. Emma Lejeune Dr. Marcin Malinowski Dr. Tomasz Timek Dr. Tomasz Jazwiec

The University of Texas at Austin Aerospace Engineering and Engineering Mechanics Cockrell School of Engineering

